
Still TCL after all these years
...

Axel Nagelschmidt

How i learned to stop worrying and to rely on
frameworks, building blocks and tests

A short historical overview how i used TCL through the
ages and where it helped me to successfully build

industry reliable working software tools.

The dark ages ...

• 1995 founded MATHEMA GmbH
• Sun SPARC 10 for about 12KDM
• C and X11, about 200 lines for window +

button + colour stripes
• crash on different colour depth
• wrote little helpers, GUI tools, text

processing for admin tasks, generated
content for pagemaker layout pgm

New horizons ...

• 1998 joined BIOTRONIK GmbH & Co. KG

• Knowledge on TCL, GUI development
helped to being accepted

• Creating tools using Labwindows CVI
• Helped VLSI department on TCL with

filters and helpers in chip development

Invention of Home Monitoring

• Development of implantable Pacemaker
with transmission antenna for ULPAMI

• Development of Patient Device RUC
(remote unit controller), bridge to GSM

• Feasibility shown on XIth World
Symposium on Cardiac Pacing and
Electophysiology, Berlin, June 27-30, 1999

• Task: write demo application for 6 implants

The big challenge ...

Where TCL helped

• Produce readable and maintainable code
• GUI tools to ease adminstration tasks
• Network transparent operation
• OS independent development (SunOS

SPARC -> Linux x86 -> Solaris x86 ->
Linux on vmware SUN T4-4)

• Tclhttpd as webserver for monitoring
• Extension crosscompiled for 4 platforms

Some demo views

More demos

• eti -> eti2 -> miniweb editors/wiki
• tool -> tools frameworks
• toolserver -> testserver -> snitwebserver
• moni to produce monitoring dashboard

Building blocks that helped

• tclhttpd tcllib -> everything was prepared!
• Oratcl tequila sqlite -> rock stable! (2 of 3)
• ttk::notebook tablelist -> beautiful GUI
• iTcl Xotcl snit -> understand the java folks
• Freewrap -> apps for inhouse customers
• tcltest -> assurance system running, TDD

continuous monitoring

• moni to do tests locally
• testserver to distribute results
• moniweb to produce dashboard as ONE

big wiki HTML page

Continous development, TDD

• moni to wrap tcltest for user tests and IT
staff

• Test driven development

Development cycles

Why testing?

• Testing makes you aware whether expectations
/ requirements are met by your implementation

• Gaining intelligence all time during development
through tests!

• The problem is not that there are problems. The
problem is expecting otherwise & thinking that
having problems is a problem. —T. Rubin

Thank you

• for your attention

• for a fantastic community

• for the organization

A wish came true ?

• #!/usr/local/bin/tclsh
• # sas - Small Application server - Snit Application Server
• if {$argv == ""} {puts "appname please!“; exit 0}
• package require snit; package require sqlite3
• sqlite3 db $env(HOME)/etc/dbs/[lindex $argv 0].db
• proc runpage {wiki page} {db eval {select value from tt

where wiki = $wiki and key = $page} x {set code
$x(value)}; eval $code}

• runpage main boot
• runpage main init

Environment for sas apps

• DB contains “pages“ in a wiki with key-value pairs

• Create table for app APPNAME in path
$HOME/etc/dbs/APPNAME.db like so:

• CREATE TABLE tt (id id, key text, value text, wiki text,
first date, count number, last date)

• Pages main:boot and main:init are started first
• Extensions for jobs, ping tests, wiki, webserver ...

• freewrap sas.tcl to create universal binary

