VTK  9.2.6
vtkBiQuadraticQuadraticHexahedron.h
Go to the documentation of this file.
1 /*=========================================================================
2 
3  Program: Visualization Toolkit
4  Module: vtkBiQuadraticQuadraticHexahedron.h
5 
6  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
7  All rights reserved.
8  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
9 
10  This software is distributed WITHOUT ANY WARRANTY; without even
11  the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
12  PURPOSE. See the above copyright notice for more information.
13 
14 =========================================================================*/
90 #ifndef vtkBiQuadraticQuadraticHexahedron_h
91 #define vtkBiQuadraticQuadraticHexahedron_h
92 
93 #include "vtkCommonDataModelModule.h" // For export macro
94 #include "vtkNonLinearCell.h"
95 
96 class vtkQuadraticEdge;
97 class vtkQuadraticQuad;
98 class vtkBiQuadraticQuad;
99 class vtkHexahedron;
100 class vtkDoubleArray;
101 
102 class VTKCOMMONDATAMODEL_EXPORT vtkBiQuadraticQuadraticHexahedron : public vtkNonLinearCell
103 {
104 public:
107  void PrintSelf(ostream& os, vtkIndent indent) override;
108 
110 
115  int GetCellDimension() override { return 3; }
116  int GetNumberOfEdges() override { return 12; }
117  int GetNumberOfFaces() override { return 6; }
118  vtkCell* GetEdge(int) override;
119  vtkCell* GetFace(int) override;
121 
122  int CellBoundary(int subId, const double pcoords[3], vtkIdList* pts) override;
123  void Contour(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
124  vtkCellArray* verts, vtkCellArray* lines, vtkCellArray* polys, vtkPointData* inPd,
125  vtkPointData* outPd, vtkCellData* inCd, vtkIdType cellId, vtkCellData* outCd) override;
126  int EvaluatePosition(const double x[3], double closestPoint[3], int& subId, double pcoords[3],
127  double& dist2, double weights[]) override;
128  void EvaluateLocation(int& subId, const double pcoords[3], double x[3], double* weights) override;
129  int Triangulate(int index, vtkIdList* ptIds, vtkPoints* pts) override;
131  int subId, const double pcoords[3], const double* values, int dim, double* derivs) override;
132  double* GetParametricCoords() override;
133 
139  void Clip(double value, vtkDataArray* cellScalars, vtkIncrementalPointLocator* locator,
140  vtkCellArray* tetras, vtkPointData* inPd, vtkPointData* outPd, vtkCellData* inCd,
141  vtkIdType cellId, vtkCellData* outCd, int insideOut) override;
142 
147  int IntersectWithLine(const double p1[3], const double p2[3], double tol, double& t, double x[3],
148  double pcoords[3], int& subId) override;
149 
150  static void InterpolationFunctions(const double pcoords[3], double weights[24]);
151  static void InterpolationDerivs(const double pcoords[3], double derivs[72]);
153 
157  void InterpolateFunctions(const double pcoords[3], double weights[24]) override
158  {
160  }
161  void InterpolateDerivs(const double pcoords[3], double derivs[72]) override
162  {
164  }
167 
174  static const vtkIdType* GetEdgeArray(vtkIdType edgeId);
175  static const vtkIdType* GetFaceArray(vtkIdType faceId);
177 
183  void JacobianInverse(const double pcoords[3], double** inverse, double derivs[72]);
184 
185 protected:
188 
197 
198  void Subdivide(
199  vtkPointData* inPd, vtkCellData* inCd, vtkIdType cellId, vtkDataArray* cellScalars);
200 
201 private:
203  void operator=(const vtkBiQuadraticQuadraticHexahedron&) = delete;
204 };
205 
206 #endif
cell represents a parabolic, 9-node isoparametric quad
cell represents a biquadratic, 24-node isoparametric hexahedron
void JacobianInverse(const double pcoords[3], double **inverse, double derivs[72])
Given parametric coordinates compute inverse Jacobian transformation matrix.
void InterpolateDerivs(const double pcoords[3], double derivs[72]) override
Compute the interpolation functions/derivatives (aka shape functions/derivatives)
void PrintSelf(ostream &os, vtkIndent indent) override
Methods invoked by print to print information about the object including superclasses.
int GetCellType() override
Implement the vtkCell API.
static const vtkIdType * GetFaceArray(vtkIdType faceId)
Return the ids of the vertices defining edge/face (edgeId/‘faceId’).
int CellBoundary(int subId, const double pcoords[3], vtkIdList *pts) override
Given parametric coordinates of a point, return the closest cell boundary, and whether the point is i...
int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) override
Generate simplices of proper dimension.
void Subdivide(vtkPointData *inPd, vtkCellData *inCd, vtkIdType cellId, vtkDataArray *cellScalars)
int GetNumberOfFaces() override
Implement the vtkCell API.
void InterpolateFunctions(const double pcoords[3], double weights[24]) override
Compute the interpolation functions/derivatives (aka shape functions/derivatives)
static void InterpolationFunctions(const double pcoords[3], double weights[24])
double * GetParametricCoords() override
Return a contiguous array of parametric coordinates of the points defining this cell.
int EvaluatePosition(const double x[3], double closestPoint[3], int &subId, double pcoords[3], double &dist2, double weights[]) override
Given a point x[3] return inside(=1), outside(=0) cell, or (-1) computational problem encountered; ev...
int GetCellDimension() override
Implement the vtkCell API.
void Derivatives(int subId, const double pcoords[3], const double *values, int dim, double *derivs) override
Compute derivatives given cell subId and parametric coordinates.
int GetNumberOfEdges() override
Implement the vtkCell API.
int IntersectWithLine(const double p1[3], const double p2[3], double tol, double &t, double x[3], double pcoords[3], int &subId) override
Line-edge intersection.
static void InterpolationDerivs(const double pcoords[3], double derivs[72])
void EvaluateLocation(int &subId, const double pcoords[3], double x[3], double *weights) override
Determine global coordinate (x[3]) from subId and parametric coordinates.
static vtkBiQuadraticQuadraticHexahedron * New()
void Contour(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *verts, vtkCellArray *lines, vtkCellArray *polys, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) override
Generate contouring primitives.
void Clip(double value, vtkDataArray *cellScalars, vtkIncrementalPointLocator *locator, vtkCellArray *tetras, vtkPointData *inPd, vtkPointData *outPd, vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd, int insideOut) override
Clip this biquadratic hexahedron using scalar value provided.
vtkCell * GetFace(int) override
Implement the vtkCell API.
vtkCell * GetEdge(int) override
Implement the vtkCell API.
static const vtkIdType * GetEdgeArray(vtkIdType edgeId)
Return the ids of the vertices defining edge/face (edgeId/‘faceId’).
object to represent cell connectivity
Definition: vtkCellArray.h:296
represent and manipulate cell attribute data
Definition: vtkCellData.h:151
abstract class to specify cell behavior
Definition: vtkCell.h:150
abstract superclass for arrays of numeric data
Definition: vtkDataArray.h:165
dynamic, self-adjusting array of double
a cell that represents a linear 3D hexahedron
list of point or cell ids
Definition: vtkIdList.h:143
Abstract class in support of both point location and point insertion.
a simple class to control print indentation
Definition: vtkIndent.h:119
abstract superclass for non-linear cells
represent and manipulate point attribute data
Definition: vtkPointData.h:151
represent and manipulate 3D points
Definition: vtkPoints.h:149
cell represents a parabolic, isoparametric edge
cell represents a parabolic, 8-node isoparametric quad
@ value
Definition: vtkX3D.h:226
@ index
Definition: vtkX3D.h:252
@ VTK_BIQUADRATIC_QUADRATIC_HEXAHEDRON
Definition: vtkCellType.h:118
int vtkIdType
Definition: vtkType.h:332